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APPLYING ARTIFICIAL INTELLIGENCE TECHNIQUES TO
STRATEGIC-LEVEL GAMING AND SIMULATION

Paul K. Davis

The Rand Corporation and the Rand Graduate Institute
1700 Main Street

Santa Monica, California 90406-2138
The United States

This paper describes a large-scale program melding rule-based
modelling and traditional simulation in the problem domain of
game-structured military strategic analysis. It then draws on
the program's experience to discuss paradigms from artificial
intelligence, concepts and techniques for representing knowl-
edge in a policy domain having no body of acknowledged experts
or experimental data, and lessons from managing the related
research and software development. Finally, it discusses
implications for the ability to reflect in policy analysis
concepts of bounded rationality and organizational behavior.

1. INTRODUCTION

This book explores ways in which knowledge-based modelling can be
integrated with traditional simulation modelling to produce something
transcending the separate activities. This paper des.nr4bes an
operational prototype system accomplishiig -7ecisely thic kind of
synthesis, and a related research effort that may well be unique in
scope, complexity, and relevance to interdisciplinary policy analysis.
The paper proceeds chronologically to provide a realistic image of how
a successful development evolved and of the extent to which concepts
and techniques from AI have proved useful in eac. phase of the work.

2. PHASE ONE: THE CONCEPT OF AUTOMATED WAR GAMING

2.1 The Problem Domain and Initial Concepts for an Approach

The work dezribed here had its origins in a U.S. government request
in 1979 for a new approach to strategic analysis that would combine
features of human political-military war gaming and analytic
modelling. The request reflected rejection of sole reliance on
traditional system analysis and strategic simulation models with their
focus on stereotyped rcenarios, simple measures of effectiveness, and
purely quantitative analysis. From war gaming was to come an enriched
global view with strategic nuclear forces present in a context of
military campaigns, political constraints, alliances, escalation and
de-escalation, and imperfect command and control (Marshall, 1982;
Davis and Winnefeld, 1983). However, it was recognized that war
gaming itself was nt ; " ,tion: War games are slow, expensive,
manpower intensive, .;,d .rrow in scope. Working through a single war
game, however intere- - does not justify drawing conclusions
because results depen, sitively on the players and because cause-
effect relationships can be quite unclear. The government hoped,
then, for a change of approach that would somehow retain the game
character but permit greater analytic rigor.

Reprinted from ModeUing and Simulation Methodology in the Artificial Intelligence Era,
M. S. Elma, T. I. Oren, and B. P. Zeigler (eds.), Elsevier Science Publishers B. V. (North-
Holland,, 1986, pp. 315-338. Reprinted with permission.



Upon reviewing the government's request, Rand concluded that to gain
control over the enormous number of variables in a war game it would
be necessary to automate the war game as suggested in Figure 1. In
this concept, which was deemed radical in 1980, Rand proposed a game-
structured interactive simulation in which any of the human teams
could be replaced by automated models called "agents." Thus, one
could have a closed simulation with agent pitted against agent, a
mixed simulation with one or more human teams, or a computer-assisted
human war game (Graubard and Builder, 1980).

Even at this stage of thinking the concept involved a synthesis of
knowledge-based modelling (the Red, Blue, and Scenario Agents of
Figure 1) and more traditional simulation modelling (the Force Agent,
which would keep the game clock, move and keep track of military
forces, assess the results of battle, and generally cope with the
consequences of decisions). The concept also assumed that the
decisionmaking agents (Red, Blue, and Scenario Agents) would depend
primarily upon qualitative heuristic rules rather than on optimizing
algorithms.
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Schematic Representation of the Automated War Game

2.2 The Mark I System

Serious work began in 1980 when Rand was asked to build quickly a
rudimentary demonstration system to illustrate its notion of automated
war gaming. A conservative approach using existing capabilities at
Rand was taken, but integration was complex. Some characteristics of
the Mark I system were as follows:

o The Red Agent made decisions by (a) comparing a 15-dimensional
characterization of the current world state with a set of world
states previously considered and identified in data, (b) choosing
the world state in data that was "closest" to the current one (as
defined with a Euclidean metric), and (c) following If ... Then
... instructions associated with that of the state in data.

" The Scenario Agent was an experiment with rule-based modelling in
an English-like Rand AI language called ROSIE (Fain, Hayes-Roth,
Sowizral, and Waterman, 1982) that allowed users to review and
change rules interactively.



o The Force Agent consisted of simple combat simulation models
developed in previous Rand work.

o There was a Blue team rather than a Blue Agent, all interfaces
were manual, and the system lashed together three computers and
three programming languages.

The Mark I system successfully conveyed to government reviewers a
sense for the project's vision and demonstrated not only that
decisionmaking agents could be built, but also that automated war
gaming could allow users to examine a wide range of scenarios.
Indeed, it strongly encouraged focusing on the very scenario variables
that are so often taker, for granted in policy studies (Builder, 1983).
The reviewers were also impressed with the experimental Scenario Agent
(Dewar, Schwabe, and McNaugher, 1982), because they placed great value
on being able to review and change the underlying rules of a model.
This endorsement of transparency by senior and mid-level officials had
a major impact on subsequent work.

In spite of their interest, the reviewers were by no means sanguine.
They were skeptical about moving from a simple demonstration system to
something with a high degree of military content. They feared that
the Mark I system might be "another example of computer scientists
making great promises on the basis of a 'toy problem'." Nonetheless,
the Phase One effort was successful in gaining support for further
work and laying an empirical base of experience for the research team
that would prove important for the next five years.

3. PHASE TWO: CONCEPTS FOR IMPROVING THE SUBSTANTIVE CONTENT

3.1 Prelude

After a year's funding hiatus, work began again in earn-st in early
1982 with the government stipulating that there was to 6e no
additional computer activity until the concepts had been developed for
greatly improving the military content of the approach.

Key decisions were made rather quickly. The Mark I pattern-matching
approach to the Red and Blue Agents was inappropriate for advanced
work because it was neither transparent nor readily scalable to more
complex work. After a review of alternatives based on a survey of the
AI literature (Steeb and Gillogly, 1983), it was decided early in 1982
that decision modelling would revolve around "analytic war plans,"
which would be new constructs (Davis, 1982) based loosely on the
scripts of Al (see, for example, Schank and Abelson, 1977, and
Carbonell, 1978). The rationale for this was that by using script
techniques one could make early use of the substantial knowledge that
exists about real-world military operations and plans. The
alternative of developing a goal-directed model to create such complex
plans within the simulation appeared (at least to the author) to be a
prescription for delays and potential failure.

The script approach was itself no panacea and would have to be
extended significantly to permit the Red and Blue Agents to change
their analytic war plans at appropriate times and to orchestrate the
change of plans intelligently. Although there is an insidious
temptation to turn strategy problems into decision trees, which would
make scripts easy to use, the reality is that one does not know even
which events will occur, much less in what order or precisely when.
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This implied the need for a building-block approach in which primitive
plans in the form of scripts would be combined and used to fit the
circumstances (Davis, 1982).

The model for Red and Blue Agents emerging from this thinking was to
have three "levels." The National Command Level (NCL) would pick
analytic war plans, which would be the scripts containing general
instructions for Area Command Levels (ACLs), with different ACLs for
different regions worldwide. The ACLs would refine the action
instructions based on the current state of the simulation (e.g., they
might choose one or another branch of an analytic war plan). The
Tactical Command Level (TCL) submodels, which have subsequently been
reinterpreted, would refine instructions to the level of tactics and
would determine more precisely what the Force Agent would be asked to
do with military forces. Thus, one could say that the NCL submodel
would pick a script and the ACL and TCL would "fill in slots of that
script." Precisely how this would be accomplished was unclear,
although some of the workers envisioned something akin to AI chess-
playing programs with large numbers of look-ahead projections
searching for good stratagems within the general structure imposed by
the analytic war plan (Steeb and Gillogly, 1983).

There were two other important concepts affecting the Red and Blue
Agents: (1) because of fundamental uncertainties about superpower
behavior, there would be alternative Red and Blue Agents referred to
informally as "Sams" and "Ivans," and (2) as suggested above, the Red
and Blue Agents would conduct look-aheads to test potential analytic
war plans before making final decisions, look-aheads consisting of a
game within the game using Red's image of Blue and vice versa (more on
this below).

Another part of the early thinking in 1982 dealt with the
characteristics desired for a future Force Agent. Several conclusions
were especially important (Davis, 1982; see also Bennett, Bullock,
Jones, and Davis, 1985):

o The emphasis would be on breadth rather than depth, and well-
intended suggestions to add ever-increasing detail would be
resisted. The goal was to be the capability to answer many "What
if?" questions quickly, with a strategic rather than tactical
perspective. This implied aggregation and parameterization.

o The simulation would be self-contained with no special effort to
insert other large-scale models as modules (something likely to
increase technical problems and confusion).

" To the extent permitted by finite iniaginations, the attempt would
be made to reflect all phenomena having an important bearing on
the strategic-level outcome--even if the phenomena were difficult
to quantify or simulate. As a matter of principle, "scripted
models" would be used, which would draw upon separate studies,
judgments, or prudent speculation, rather than omit important
phenomena altogether (Davis, 1982).

A scripted model might be as simple as a provision allowing one of the
superpowers to create a crisis in region x as the result of events in
region y, with the precise nature of the crisis left unspecified. In
this case, the model would merely post a symbol in the world state:
"Crisis exists in region x." In other cases, a scripted model might
be quantitative but simple. For example, it might decree that the
military forces of Side A would advance through a particular region on
a rigid timescale based on a separate study.
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There was nothing novel about the individual examples of scripted
models, but establishing their widespread use as a matter of principle
was unique. It also met resistance until the scripted models began
proving their value by allowing the research team to address issues
policymakers know are important but that modellers commonly ignore
because of uncertainties or "softness." The scripted models are
especially valuable in dealing with issues of escalation, where
nations react to symbols (e.g., the fact of an invasion or the
crossing of some other tacit boundary) more than to details, and in
examining parametrically the potential significance of military events
that are difficult to simulate in detail (e.g., events affecting
command and control). In passing, it might be observed that
resistance to treating qualitative ill-defined events in simulations
with scripted models was analogous to the resistance received in the
1960s and 1970s by those who first questioned rational-analytic models
(Simon, 1980) and those who insisted on including important but
subjective cause-effect relations in policy simulations (Forrester,
1969).

3.2 The Mark II System

Although most computer work had been deferred, it was deemed essential
to gain additional empirical experience. Thus, by the summer of 1982
manual walkthrough experiments were conducted to gain experience with
analytic war plans, an improved Scenario Agent (Schwabe and Jamison,
1982), and the use of multiscenario experiments to derive policy
conclusions. These experiments improved intraproject communications
and morale and provided the basis for a coherent status report. Their
value was analogous to that of the rapid prototyping frequently
discussed in the literature.

Some of the principal lessons from this period of theorizing and
experimenting were the following:

o Even simple analytic war plans could effectively communicate a
sense for objectives, strategy, and interrelationships. Although
the plans existed only in notebooks, it would clearly be possible
to encode them.

" The notion of Red's Blues and Blue's Reds (i.e., each side's
perceptions of the other) could reflect analytically something
discussed by international relations specialists for years: that
misunderstandings about the opponent can be the origin of
unintended escalation and other forms of disaster (see Glaser and
Davis, 1983, and classic references therein; see also the more
general discussion of policy-relevant games by Elzas, 1984).

o As noted earlier, the script concept would have to be extended
substantially to cope with plan changing and resynchronization
(one of the genere.l problems facing variable-structure simula-
tion, as discussed by Zeigler elsewhere in this volume).

" interdisciplinary work was greatly hindered by the jargon of AI
and computer science more generally; domain-specific language was
greatly to be preferred if misunderstandings were to be minimized
ane the vision sharpened. There were serious culture gaps among
Al specialists, other computer scientists, and modellers/pro-
grammers concerned with military issues.

o The transparency of individual rules in English-like computer
code was misleading: it was very difficult to review and
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comprehend entire rule modules, in part because it was difficult
to judge completeness and to see the logic in a compact physical
space.

o There was an insidious side to the practice of heuristic
modelling--in taking the pendulum swing away from rigorous
quantitative modelling, there was a tendency to write ad hoc
rules without appropriate structure or theory. It was sometimes
difficult to judge the quality of rule sets.

The Phase Two work led to a government decision authorizing construc-
tion of a prototype system over a two-year period (1983 and 1984),
an effort that would require approximately twice the previous phases'
efforts (approximately 70 man-years were expended between 1980 and
the end of 1984).

4. PHASE THREE: DEVELOPMENT OF A PROTOTYPE SYSTEM

Phase Three began early in 1983 and continued intensively for two
years (and, in a sense, for 2-1/2 years, since consolidation of
progress required at least six months in 1985). The result was a
prototype system for automated and interactive war gaming. This
section describes the design and implementation of that prototype,
again with a view toward indicating realistically how progress was
made. At present (late 1985), work is under way to develop and
transfer to the government a first-generation operational version of
the Rand Strategy Assessment System (RSAS). That work will continue
through 1986.

4.1 Choosing a Programming Language

One of the earliest decisions in 1983 was to choose a programming
language. The requirements were: (1) speed (less than a half day for
an automated war game processing thousands of rules and large numbers
of numerical algorithms with programs having tens of thousands of
lines of code); (2) transparency of decision rules and decision
processes (explanation facilities); and (3) transportability of the
eventual system for automated war gaming. The decision was to work
with two programming languages, one for the Force Ayent simulation,
the other for the rule-based decision models. The former would be the
existing C language; the latter would be new and would require
considerable development. What follows summarizes the principal
considerations (Shapiro, Hall, Anderson, and LaCasse, 1985a):

SIGNIFICANT FEATURES OF LANGUAGES USED

C Language and UNIX Operating System (major characteristics)

o portable among modern computer systems
o available and familiar at Rand
o efficient
o powerful and flexible (e.g., C/UNIX allows

hierarchical files, complex data structures
accessed by strongly-typed pointers,
long variable names improving readability of
self-documenting code, and structured programming)

o suitable for building a fast readable preprocessor
language for the decision models (using UNIX
utilities such as LEX and YACC)
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RAND-ABEL
M 
Programming Language (initial requirements)

o fast (execution speeds of seconds for decision models)
o readable and modifiable by nonprogrammers
o easily extended
o identify errors early (via strong typing)

Adopting C/UNIX raised difficulties for the Force Agent programmers
familiar with languages such as Fortran and PL/1, but they came rather
quickly to like C/UNIX, which is not usually mentioned in connection
with simulation modelling. The basic reason for their enthusiasm was
that the simulation has many features akin to those of operating
systems (e.g, extensive use of pointers to a centralized database
necessitated by interactions among parts of the simulation,
interactions of special interest for strategic-level global war
gaming). C/UNIX is a strong language for such applications.

The history and rationale for the RAND-ABEL language are described in
Shapiro et al (1985a). Two factors were especially important. The
first was the speed requirement, which ruled out Rand's ROSIE
language, even though ROSIE has been successfully used on many other
AI applications successfully. The second factor was more subtle: it
was observed that early decision models such as the Scenario Agent did
not rely upon generalized inference with AI-style "search," although
the ROSIE language in which it was written had such capabilities;
this, and the impression that the same would be true for more advanced
models, suggested that ,he new programming language could be highly
procedural and would not have to possess a general inference engine.
Thus, RAND-ABEL was originally conceived as a fairly simple pre-
processor for the C language. In reality, it has developed into a
sophisticated language with some unique and attractive features
(especially tables) that will be discussed later in the paper. It has
indeed proven very fast (only three times slower than C itself),
resulting in execution times less than 1 millisecond per rule on a VAX
11-780.

4.2 Model Architecture and System Design: Managing Complexity

The next issue was to tighten the ccnceptual model and develop some-
thing approximating system specifications. Because concepts were
still evolving rapidly and because those concepts were often abstract
because of their novelty, it was infeasible to develop rigorous system
specifications and a conscious decision was made to forego attempting
to do so except in specific problem areas. Indeed, the reality is
that many system specifications were not developed until 1985--after
the prototype system had been successfully constructed and demon-
strated.

What did exist in 1983 was a conceptual model designed with a
strategic-level perspective and a rather high-level system overview
(Hall, Shapiro, and Shukiar, 1985). Figure 2 describes the conceptual
model as conceived early in 1983 (Davis and Stan, 1984).

The first column of Figure 2 describes the top level of the game:
Red, Blue, Scenario, and Force Agents "take turns," although the order
and time spacing of moves vary with events in the simulation and moves
by one agent are based on only imperfect knowledge of other agents'
prior moves because of time delays and command and control
limitations. Recall that the Force Agent is conducting the simulation
and keeping the simulation's clock; the role of the other agents is to
make decisions about the actions to be simulated by Force Agent.
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Figure 2
Conceptual Model of the RSAC Simulation

Using Red for the sake of example, the second column shows that within
a given Red move the first issue is whether Red is satisfied with

results using its current analytic war plan. If so, Red merely
continues with that plan--although it may be necessary to refine the
plan or to decide which of several plan branches to take. The
refinement and execution of a plan is accomplished by modules
identified with military command levels.

If the Red Agent is not satisfied with its current analytic war plan--
as determined by tests contained within that plan (e.g., tests of
whether Blue is escalating or successfully defending)--then Red's NCL
must have the opportunity to change that plan. The process for doing
that is suggested in the third column (and discussed at more length
later in the paper). The character of the NCL decision process is not
that of a script, but rather something more nearly like rational-
analytic thinking--but with mostly heuristic decision rules.

The third column of Figure 2 indicates that after the NCL has
tentatively chosen a new plan it can test that plan by conducting a
look-ahead--a game within a game. However, in doing so it must make
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assumptions about its opponent, third countries, and the laws of war--
all of which may be wrong. Just as there are alternative Red and Blue
Agents (the Sams and Ivans), so also can there be alternative Red's
Blues and Blue's Reds. In principle, this perception-related
recursion could extend to infinite depth, but actual practice avoids
look-aheads within look-aheads: Agents within a look-ahead can
project their opponent's behavior using current information and
heuristics or simple algorithms, but they do not call upon the full
game machinery for a game within a game within a game. Realistically,
this seems to sacrifice very little credible information.

Figure 3 elaborates on the internal structure of the Red and Blue
Agents, emphasizing a more complex hierarchical character than
originally conceived. The Global Command Level (GCL) is an abstrac-
tion combining, for example, the Blue functions of the Joint Chiefs
of Staff, State Department, and White House Staff. The Supertheater
Command Level corresponds to something like NATO's Supreme Allied
Commander in Europe (SACEUR) and, simultaneously, the U.S. Commander
in Chief in Europe. The Area Command Levels, then, correspond to
individual theater-level commands (e.g., the NATO commander for
Euro:,e's Central Region). The number of subordinate commands (i.e.,
SCLs and ACLs) can be changed easily, as can the physical regions over
which they have authority. The Operational Command Level (OCL) models
are really service models for managing forces. One function of an OCL
model might be to decide on a daily basis what fraction of a given
theater's air forces should be used for interdiction bombing rather
than air defense. These models rely upon a mixture of quantitative
algorithms and qualitative heuristics and are responsible for
reasonably fine-grained decisions about operations.
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Figure 3
Hierarchical Structure of Red and Blue Agents

The outputs of the GCL, SCL, ACL, and OCL models are the force orders
to which the Force Agent responds when it next conducts the
simulation. In executing force orders, the Force Agent can apply
different tactical logic for Red and Blue to reflect asymmetries
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between Red and Blue military forces, doctrine, and capability. Thus,
part of the logic defining the abstractions known as the Red and Blue
Agents is actually located within the Force Agent rather than the
decision model but the decision models can guide the Force Agent's
logic by setti--g appropriate parameters. For example, an ACL may
specify a forward defense rather than a fallback to some defense line
in the rear and an OCL may specify certain constraints on the use of
different national forces within an alliance; the Force Agent will
then perform regular reallocations of ground forces among combat axes
consistent with the guidance received.

Figure 4 is an influence diagram showing that the various command
levels communicate through a rigid line of authority. By writing
appropriate rules, however, the real-world phenomenon of a national
leader communicating directly with a tactical commander can be
simulated: the mechanism for doing so amounts to having the
intermediate command models pass on the NCL's instructions without
delay or adjustment. The design also specifies that (a) diplomatic
exchanges occur between GCLs and (b) the NCL uses information
resulting from Force Agent and Scenario Agent activities, but does not
send instructions back, communicating instead with its lower command
levels.

Figure 4
Influence Diagram for RSAS

Figure 5 shows an aggregated data-flow diagram of the system as it
existed in late 1985 (Davis, Bankes, and Kahan, 1985). The system is
highly centralized because of the many interrelationships that exist
among types of decision and types of military actions worldwide.
Thus, there are many global data variables for both the decisionmaking
agents and Force Agent. Access to information is controlled through a
data dictionary. Humans can interact through a data editor or a
currently separate Force Agent interface.

It is impractical to show a control-flow diagram for the system
because the control flow varies drastically from run to run. Figure 6
shows the system's subprograms (or, loosely, "objects"), with System
Monitor represented as the Main Program determining control flow. It
is System Monitor, for example, that contains the "wake-up rules"
determining when a particular agent should have a move, and the order
of moves among agents when several wish to move at the same time. The
mechanism for wake-up rules is fairly complex. For example, if a Red
Area Command Level model decides on a course of action and issues a
series of orders, it will also specify the conditions under which it
will want to move again (e.g., every day, or if any of certain events
occur). These conditions will be reflected by data items in the World
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Figure 6
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Top-level Subprograms (Ob*ts) of the RSAS

Situation Data Set (WSDS). As the Force Agent conducts the
simulation, it tests the conditions on a regular basis; if one of them
is met, it sets another data value indicating that one or more
particular agents want to awaken and move. It is then System Monitor
that takes control and decides which Agent is to be awakened next.

It was recognized early in 1983 that implementation of analytic war
plans with a script-like character would be greatly simplified by
using co-routines, so a co-routine capability was provided in
RAND-ABEL by Edward Hall for the UNIX environment (Shapiro et al.,
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1985a,b). By late 1983, it was decided to use hierarchical
co-routines structured to correspond reasonably well to command and
control relationships in the real world (i.e., relations of the sort
suggested in Figure 3).

One reason for including the design diagrams is to emphasize the
difference between the system discussed here and more typical expert
systems. Those differences include: (1) complexity (the system
discussed here can be considered to include many separate expert
systems as well as programs of a rather different character); (2) the
requirement for hierarchical structuring; and (3) the requirement for
difficult system programming rather than application of generic expert-
system software.

It may also be worth noting that the system is definitely "object
oriented" intellectually. The various agents represent a nearly
decomposable hierarchy (Simon, 1980) of natural entities that operate
independently to a first approximation but interact significantly in
controlled ways (e.g., by engaging in crisis or conflict). They also
communicate in the normal sense of that term (e.g, through diplomatic
messages). On the other hand, RAND-ABEL does not have some of the
features of object-oriented languages such as SMALLTALK (Goldberg and
Kay, 1976) or Rand's ROSS (McArthur and Klahr, 1982). In particular,
the mechanisms for message passing and other interactions are quite
different.

4.3 Representation of Knowledge: General Comments

The design of the Rand Strategy Assessment System (RSAS) had to
address many basic issues, including: (1) what entities should be
focused upon in the game-structured simulation, (2) when should each
entity move, (3) how should the various entities communicate, and (4)
how should the various entities decide what to do in a move (decision
style). The answers required domain-specific knowledge if the
resulting simulation was to be comprehensible and achieve a level of
phenomenological verisimilitude (or, at least, a naturalness and
plausibility).

A sometimes implicit consideration in system design, but one about
which the author was especially concerned, related to the absence of
experts and empirical data. There are national security specialists
(including the author), but there are no "experts" in the sense that
term is used in AI. And, fortunately, there have been few superpower
crises in the last forty years, and none of them has brought the world
into general war. One consequence of this is that a system attempting
to simulate a variety of potential crises and conflicts had to achieve
higher standards of transparent logic than would, far example, an
expert system that could demonstrate its validity empirically. Also,
if the system were to be useful in understanding issues of deterrence,
crisis stability, and military strategy more generally, the various
rule-based agents would have to exhibit human-like behavior and
thought processes. At the same time, model development would have to
be highly analytic: For this application no expert was available to
provide all the rules from his intuition, and yet it was essential
that care be taken to assure some level of completeness--holes in the
knowledge base could be much more serious here than in a typical
expert system.

These factors had many consequences, among them the use of substantial
domain-specific knowledge in every facet of system design. By
contrast with expert-system models in which it has proved useful to
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separate discrete entities such as a scheduler, inference engine, and
knowledge base %see, for example, Hayes-Roth, Waterman, and Lenat,
1983), in the present work such an approach was neither feasible nor
desirable. To the contrary, knowledge has been reflected in many
different places and in a variety of different representations.
Furthermore, the logic of RSAS models makes only minimal use of
"general search" or generic inference techniques. Instead, the
control logic tends to be highly structured (procedural)--something
consistent with many classic AI efforts (e.g., those involving
decisionmaking theory, organizational theory, or script), but quite
different in character from much of the current expert-system work on
goal-directed search with programming languages possessing inference
capabilities using generalized search.

4.4 Knowledge Representation in System Architecture

The RSAS system design, then, employs substantial "meta knowledge" in
the sense of Hayes-Roth et al (1983). This meta knowledge about the
domain (military strategic analysis) affected both system architecture
(e.g., the objects of attention) and the system's top-level control
structure.

SYSTEM CHARACTERISTICS REFLECTING DOMAIN-SPECIFIC META KNOWLEDGE

Number of high-level players in game (Red and Blue)
Command-control hierarchy for players (see Figures 3,4)
Order of moves
Top-level process model for Red and Blue Agent moves (see
Figure 2)

Process model for Scenario Agent moves (Perception-Response)

Meta knowledge also determined the characters of the various Red and
Blue submodels (which will be discussed further below):

MODELS AND MODEL CHARACTER

National Command Level Rational, analytic, global in
perspective, and not bound
by history: Strategic
Behavior

Military Command Levels Follows a prescribed plan,
(GCL, SCL, ACL) albeit with key decision points

and adaptations, using many
building-block procedures
that are individually complex
but practiced: Organizational
(Cybernetic) Behavior

OCL Manages forces on a routine
basis using a combination of
algorithms and heuristics
(Service Behavior)

Given the variety of models and the complexity of the simulation,
there is no single "knowledge base" in the RSAS, nor a single way to
change knowledge. Conceptually, however, one can still talk about the
knowledge base and how to change it. The options available are
summarized below, with the number of pluses indicating how easily the
change can be made.
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WAYS TO CHANGE KNOWLEDGE IN THE RSAS SIMULATION

NCL GCL,SCL, OCL Scenario Force
ACL Agent Agent

Substitute entire +++ .+.
rule sets (e.g., switch
Sams, Ivans, or the
scripts available to
Red and Blue Agents)

Change individual ++ ++ ++ ++ +

rules or algorithms

Change parameters +++ ++ +.. +++ ...
within rules
or algorithms

Change parameters ...
characterizing forces,
capabilities, laws
of war, etc.

This listing also indicates the RSAS' hierarchical approach to model
modification. All of the models are constructed so that usually one
can implement changes (e.g, for sensitivity tests) by merely changing
a parameter--either in data beforehand, or interactively during a
simulation. In addition, however, the rules written in RAND-ABEL can
be read and changed so easily that they can also be considered, in a
sense, part of "data." By the end of 2985 RAND-ABEL will also have
interpretive features making recompilation unnecessary after most
changes of decision-model rules. Currently, a reasonably typical
recompilation can take 15 minutes.

4.5 Knowledge Representation Within Analytic War Plans

As mentioned earlier, the GCL, SCL, and ACL models are supposed to
demonstrate organizational behavior. Scripts are especially suitable
here because they can capture detailed procedural knowledge (i.e.,
knowledge about how to do things, which may require dozens or hundreds
of individual instructions). The scripts of theatrical plays are a
good metaphor for military war plans because both proceed from start
to finish without backtracking, and both have natural phases (e.g.,
one must alert forces before they deploy, and one must deploy them
before they can enter combat). Just as an actor knows what to say or
do next because he already understands where he is, so also is it easy
to write military-command-level decisions within a coherent analytic
war plan: the script format reflects implicitly a great deal of
context that otherwise would have to be explicit. In effect, if the
plan is applicable, then various actions go together and certain
decision points and adaptations are predictable and to some extent
schedulable. The participant in the plan need not worry about the
larger context.

The analytic war plan describing the decision logic for a particular
ACL commander is organized hierarchically by phases, within phases by
moves, and within moves by technical complexity. For example, the
first phase of a given plan might involve placing forces on alert;
this might occur over a series of moves because of political factors
and the need to call forces up from reserve status. Within a move
that, for example, alerted military airlift, there would be a number
of specific orders understandable by the Force Agent, or by an OCL
model that would in turn issue detailed orders understandable by the
Force Agent.
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Although simple scripts might consist of nothing but a sequence of
instructions, analytic war plans must also possess decision rules
determining (as a function of the world state): when to proceed from
one move or phase to another; whether to take one or another branch of
the plan; what type of guidance should be given to OCL models managing
forces; whether to request something from higher authority (e.g., more
forces or authorization for some action); and whether to notify higher
authority that the plan is no longer working as intended and that
higher authority may wish to modify the plan or change it altogether.

Since the analytic war plans are to be building blocks for reasons
discussed earlier in the paper, they must also contain logic allowing
them to adapt to circumstances. That is, when a given plan (script)
is first invoked, it must establish its own context. As a minimum, it
must determine what the previous plan has already accomplished (Are
the forces already alerted? Have they been deployed?). In principle,
the plan might have to undo some of what the previous plan had ordered
(e.g., disengage forces prior to starting a separate offensive).

In the general case, such resynchronization would be an extremely
difficult problem in variable-structure simulations such as this.
However, in practice it has proven possible to proceed with relatively
simple domain-specific expedients. The principal technique is to
build analytic war plans in families, with all plans of a family
having a common understanding of plan phases so that if one plan
replaces another it can test to see where it should begin. Using only
a few indicators of context, it has been possible to develop a fairly
large number of building-block scripts for the Red and Blue Agent
prototypes.

4.6 Knowledge Representation In National Command Level Models

Clearly, knowledge representation for the National Command Levels must
be altogether different from that of the script-based models if the
NCLs are to exhibit "strategic" behavior. The most important issues
in representing knowledge are probably (Davis and Stan, 1984; Davis,
Bankes, and Kahan, 1985): (1) decision style, (2) strategic framework
for organizing information, and (3) characterization of alternative
NCL models (the various Sams and Ivans alluded to earlier).

The issue of decision style is especially interesting because the
choices range from decision-analytic styles, with decision trees and
utility calculations, to various styles associated with cybernetics or
bureaucratic politics (Simon, 1980, 1982; and Steinbruner, 1974).
Consistent with the desire for phenomenological fidelity and
transparency, the approach adopted is akin to the idealization of what
many real-world decisionmakers attempt (see, for example, Janis and
Mann, 1977). Figure 7 illustrates this idealized decisionmaker as a
process in which the decisionmaker first decides whether to decide,
then examines a broad range of options (taking pains to assure that he
receives a good set of choices to consider), contemplates the options
with a variety of objectives and values in mind, searches for tie-
breaking information, assimilates that information, reviews, and
decides. Also, the decision model includes plans for implementation,
contingencies, feedbacks, and control.

The NCL model is described in Figure 8. Note that the NCL model makes
a situation assessment that includes "learning" as well as
"projecting." It then specifies escalation guidance, operational
objectives, operational strategy, and detailed controls within more
generic war plans. Each such decision limits further the number of
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available plans to be considered until a single plan is selected. The
NCL then performs a look-ahead projection to see whether the tentative
plan is likely to succeed; if so, it proceeds (or compares results for
two or three plans); if it is unsuccessful, it reconsiders (with
feedback logic determined by rule-based preference orders for plan
testing and the requirement that alternative controls be tested first,
then strategies, then objectives, then escalation guidances).

The relationship between the NCL model and the idealized decisionmaker
of Figure 7 is that both describe decisionmaking as a process, both
rely primarily upon heuristic rules rather than optimization or
general search algorithms, both recognize the potential for obtaining
and using special information, and both involve trading off
conflicting objectives and values. The NCL model makes explicit the
process of situation assessment and has the options (plans) as inputs
rather than producing the options itself. In summary, then, the
overall decision styles are similar, but there are significant
technical differences. Finally, it should be noted that the design
permits treatment not only of very good decisionmaking but also
decisionmaking degraded by limitations of information, perception,
mindset, and style. This is essential if the models are to be a
useful analytic mechanism for studying issues such as deterrence and
crisis stability.

As mentioned earlier, the fundamental uncertainties about national
behavior necessitate use of alternative Red and Blue NCL models.
Before building a given model, one must form a strong image of the
particular NCL--its personality, grand strategy, and "temperament."
There is a variety of techniques for crystallizing concepts on these
matters before beginning to write the decision rulbs that constitute
an NCL model. For example, essays such as the following prove useful:

Model X is somewhat aggressive, risk-taking, and
contemptuous of the opponent, but is ambivalent--
believing that the opponent can sometimes be
aggressive and irrational. He believes his military
doctrine is essentially correct, although not always
applicable. He is strongly averse to nuclear war....

Such essays communicate a sense for a given model, but they are
imprecise. More useful are some tree-like diagrams that one can work
out on blackboards to suggest the decision points and predispositions
a given type of national leadership might have (Davis, Bankes, and
Kahan, 1985). Also useful is a methodology involving formal
attributes within which one fills out a check list for the decision
model, a check list characterizing the model's attitude toward use of
nuclear weapons, its willingness to engage in risky tactics, and other
factors. The purpose of the essays, grand-strategy trees, and some
formal attribute lists is to clarify an image of the particular Red or
Blue NCL before the rule-writer attempts to write rules. This type of
procedure is essential for achieving coherence and logic.

Next to be considered is the question of how to organize information
within a serategic framework. Three concepts have proved especially
useful: conflict levels, conflict states, and a hierarchy of variables
for situation assessment.

The concept of conflict level has become familiar in strategic
analysis since the seminal work of Kahn and Schelling in the 1960s.
One constructs an escalation ladder in which, for example, nuclear war
is "higher" than conventional war. There can be a large number of
rungs on the ladder if one wants to distinguish carefully between
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levels and types of nuclear use, types of crisis, and so forth. The
ladder concept can be quite useful, although there are serious
ambiguities when one applies it to complex problems (e.g., is war in
one theater higher or lower than war in another theater?). A more
sophisticated concept is that of conflict state (Davis and Stan,
1984), where the state is described in several dimensions such as
conflict level by theater and side, and the presence or nonpresence of
certain symbolic actions, again by theater and side. Figure 9 shows a
simplified version of such a conflict state in which dots indicate the
types and locations of certain military activities within a large but
constrained set of scenarios focused on Southwest Asia, Europe, the
high seas, and the intercontinental arena. Although rather simple,
Figure 9 summarizes much of what senior players tend to focus upon in
pondering high-level abstractions in political-military war games.
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received from the opponent, and assessment of the opponent's
intentions and will. These, in turn, would all depend on more
detailed events in the simulation (the current state and history).

The current NCL prototype models contain about 4000 lines of RAND-ABEL
code each, which is the equivalent of 10,000-20,000 lines of C code.
The rules are expressed primarily in terms of RAND-ABEL decision
tables more or less as follows, although the example is contrived.

If Current-situation is Eur-gen-conv
Then
Decision Table
Basic-status Other-status Prospects Risks / Decision

goals-met good good low terminate
goals met good good medium terminate
[... many other lines...]
losses bad bad high surrender.

Else If Current-situation is Eur-demo-tac-nuc
Then ...

Thus, the rules are modularized first by Current-situation using a
fairly complex escalation ladder to identify current-situation's
values. Within those modules, the rules are hierarchically structured
to depend primarily on high-level variables such as Risks, which are
then assessed elsewhere in the program in terms of strategic warning,
tactical warning, and other variables.

The RAND-ABEL decision table is to be read as follows. The first line
of the table's body is a rule saying that "If Basic-status is goals-
met, other-status is good, prospects are good, and Risks are low, then
the NCL decision is to terminate." This table is executable RAND-ABEL
code (not data) equivalent to a decision tree. The table format
allows the reader quickly to "see the whole" and to assess
completeness and flow. There exists an interactive table generator to
assist analysts writing rules to specify format, cover all the cases,
use the correct variable values, and so on.

There are many versions of RAND-ABEL tables, and many special
features. For example (Shapiro et al., 1985a,b): (1) the number of
and logical relationships among variables in a decision table can be
varied; (2) automatic explanations can be produced reproducing the
lines of decision tables that fire, and attaching the appropriate
comments that appear in the code as footnotes to the table; (3) one
can use relational operators like < and > in tables to reduce the
number of lines; and (4) there exist different types of tables that
provide lengthy sets of instructions in a natural format.

By contrast with software engineering techniques for using tables for
pseudocode system specifications or techniques for entering rules as
formatted data (see discussion in DeMarco, 1979), RAND-ABEL tables
appear directly in source code--replacing long chains of If... Then...
Else clauses. Properly designed rule-based programs can use tables
for a large fraction of the rules, producing highly transparent,
flexible, and self-documenting code.

In practice, these features of RAND-ABEL have proven extremely
valuable to analysts, programmers, and reviewers, and should be
seriously considered for other languages as well. In effect, the
table features exploit human capability to work two-dimensionally when
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studying information. In this respect, they (as well as the
increasingly familiar spread-sheet programs and full-screen editors)
represent a new paradigm of computer science.

4.7 The Prototype System

The prototype system for automated war gaming was demonstrated to the
government late in 1984 and greatly improved over the course of the
next six to nine months, with research continuing. The RSAS program
currently contains the equivalent of about 120,000 lines of C-code
(much of it in RAND-ABEL). An automated war game requires about 6
megabytes of storage, with current mass storage being 50 megabytes or
more, and takes less than a half day (the time required depends in
part on how many look-ahead projections the agents make). By and
large, reactions to the prototype were highly favorable, particularly
with respect to: (1) the natural representations (i.e., objects
corresponding to important commands); (2) the hierarchical treatment
of agents; (3) the NCL's situation assessment structure; (4) the
overall emphasis on user interfaces, interactivity, and graphics; (5)
the architecture allowing enrichment without change of structure; (6)
the highly flexible nature of the models; (7) speed; (8) the inclusion
of realistic command and control heuristic rules in preference to
highly simplified optimizing algorithms; and (9) compactness (the
potential exists for a single analyst to comprehend and operate the
entire system).

As of late 1985, the development of decision models and Force Agent
was reasonably balanced with a number of synergisms. Force Agent
modellers had absorbed the expert-system paradigm and developed
heuristic command and control models (in C) on the basis of experience
with human play; those developing analytic war plans were efficiently
calling on the Force Agent's capabilities to avoid having to reproduce
clumsily, in rule-based code, the types of operational- and tactical-
level decisions and orders for which algorithmically structured models
are especially suited.

Although it is dangerous to make such statements, it seems that with
respect to the principles of interest in this book--and in particular
the feasibility of constructing large-scale complex systems combining
features of both knowledge-based and simulation modelling, the most
difficult conceptual and technical problems have been surmounted.
What exist, however, are prototypes. The effort to enrich those
models and apply them will be an exciting and challenging effort for
years into the future, as will expanding the newer techniques to reAch
their full potential.

5. CONCLUSIONS

This final section of the paper attempts to draw lessons from the
experience of a large and complex effort, lessons related to the
paradigms from Al, the management challenges of developing software
mixing knowledge-based and simulation techniques, and the
opportunities for contributing to policy analysis.

The first conclusion should probably be that the paradigms of AI have
proven enormously powerful in Rand's work. Especially significant are
such concepts as nearly decomposable hierarchies, process models of
behavior, and heuristic decisionmaking under conditions of complexity
and uncertainty (see especially Simon, 1980, 1982; and Cyert and
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March, 1963). All of these are an excellent basis for system
architecture and are still insufficiently appreciated after two
decades of exposition.

Another set of paradigms with origins in Al relates to transparency
and comprehensibility. In the author's experience, modern computer
science techniques have proven invaluable in comprehending, managing,
and explaining complexity--in both software development and
applications uf the game-structured simulation. The effort to develop
a programming language that could be read and modified by good
analysts with only modest programming skills has been extremely
worthwhile and has served to narrow the man-machine gap significantly,
as have such techniques as postprocessor color graphics to describe
simulation results (Bennett et al., 1985).

The paradigms from current expert-system work are more arguable as the
basis for work of the type described here. In particular, the author
is skeptical about finding generic knowledge engineers (as distinct
from domain specialists collaborating with computer scientists to
learn the necessary paradigms and techniques of Al) and about generic
software environments as a panacea for problem solving: the limiting
factor will continue to be finding individuals capable of exploring
the particular problems in depth. Also, while it is important to have
general concepts to guide work in knowledge-based modelling and
simulation (e.g., concepts well described in Hayes-Roth, Waterman, and
Lenat, 1983), it can be highly counterproductive to allow the language
of abstractions and Al jargon to permeate the work place--especially
if success depends upon interdisciplinary work, or even on a
combination of Al conceptualizing, analytic modelling, and complex
system programming. In part because of communication problems, the
value of early prototypes, walkthroughs, and other mechanisms for
producing something tangible early cannot be easily exaggerated. So
also should modellers adopt software engineering techniques for design
(e.g., DeMarco, 1979).

Another conclusion supported by work at Rand and elsewhere is that
success in combining knowledge-based modelling and simulation for
complex problems will require an astute combination of Al thinking and
more traditional "hard" analysis: adopting heuristic approaches can
be an excuse for fuzzy thinking and the failure to develop sound
theories or straightforward algorithms. One suggestion is that Al
specialists be used as conceptual architects, analysts (including
decision analysts) used as the knowledge engineers, and system
programmers be used for rigorous system design and implementation.

One conclusion from the development effort described here should be
evident to readers: large and complex problems require time, money,
and effort. Rand's work to develop the RSAS began in 1980, with the
first prototype system not emerging until the end of 1984. This time
could have been shortened somewhat, but not dramatically.

Lastly, it seems appropriate to observe that the advent of techniques
combining knowledge-based modelling and traditional simulation will
make it possible to exploit for the first time some of the richest
ideas of the last thirty years--ideas arising from the social sciences
on such issues as organizational behavior, bounded rationality, and
the role of cognitive style in decisionmaking. In the past, it has
been difficult to apply these ideas to practical problems in part
because they did not lend themselves well to predictive modelling of
the sort easily accomplished with more classical concepts such as
profit maximization, game-theoretic solutions of simplified problems
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ignoring uncertainty, and simulation. As a result, there continues to
be a widespread tendency to approach policy-relevant modelling with
the classic tools even when they are inappropriate. Now, it would
seem (at least to the author) that it should be possible to do much
better--primarily because it is now far easier to build rule-based
models that can be large, complex, and realistic--and yet efficient
and transparent. If this notion proves valid--in applications going
beyond what this paper has discussed--simulation modellng will become
an essential tool at the fingertips of managers and other
decisionmakers (or at least their trusted staff).
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